1. Ensure correct sensor model was chosen for Input Voltage of application.

2. Mount the sensor to a DIN rail using integrated mounting clip on backside of transducer.

3. Connect input voltage -(5) & +(6) and output wiring using up to 14 AWG copper wires insulated to 75/90°. Refer to “Output Wiring” section for voltage and impedance recommendations.

4. Connect 24V AC or DC power supply fused to 5 amp to term. 3-4. Use twisted pair for CE compliance. Do not connect power supply and signal circuits together. There is no isolation.

VTD SERIES
DC Voltage Transducers
Ranges 15, 25, 50, 150, 300 and 600 Volts 4-20mA, 0-5/10VDC Outputs

Quick “How To” Guide

1. Ensure correct sensor model was chosen for Input Voltage of application.

2. Mount the sensor to a DIN rail using integrated mounting clip on backside of transducer.

3. Connect input voltage -(5) & +(6) and output wiring using up to 14 AWG copper wires insulated to 75/90°. Refer to “Output Wiring” section for voltage and impedance recommendations.

4. Connect 24VAC or DC power supply fused to 5 amp to term. 3-4. Use twisted pair for CE compliance. Do not connect power supply and signal circuits together. There is no isolation.
VTD Series Voltage Transducers are designed to monitor DC voltage and detect conditions where supply voltage is above or below normal. Detecting such conditions helps users to avoid problems commonly associated with voltage irregularities such as motor overheating, brownouts and conductor failure or poor connections. The VTD is available with 4-20mA, 0-5 or 0-10 VDC output options.

Installation
VTD transducers feature a 35mm wide DIN rail compatible enclosure and are typically located in the same environment as motors, contactors, heaters, pull-boxes, and other electrical enclosures.

To mount on DIN rail: Orient transducer so that line voltage terminals L1 and L2 are upright/on top of unit and snap securely onto DIN rail. To remove, insert small screwdriver into the lower mounting hole of the spring loaded clip, and push the handle end of the screwdriver toward the sensor base to release the tension on the rail.

To mount using screws: Insert screws and mount to back plane or other suitably flat surface.

Line Voltage Wiring Connection
CAUTION: TO AVOID ANY POTENTIAL FOR SHOCK OR SAFETY HAZARD, ENSURE LINE VOLTAGE IS DISCONNECTED AT SOURCE BEFORE WIRING TO UNIT.

Connect input voltage to be monitored to terminals -(5) and +(6) on transducer using up to 10 AWG copper wires and tighten terminals to 7 inch-pounds torque.

Do not connect the power supply and output signal together. There is no isolation.

Use twisted pair for power supply conductors for full compliance with CE directives.

Output Wiring
Connect control or monitoring wires to the sensor. Use up to 14 AWG copper wire insulated to 75/90°C and tighten terminals to 7 inch-pounds torque.

![Output Wiring Diagram]

Note: No isolation between power supply and output signal connections.

Troubleshooting Tips
1. **Transducer has no output**
 - Power supply is not properly sized. **Check power supply voltage and output rating. Each transducer requires less than 2VA to operate.**
 - Polarity is not properly matched. **Check and correct wiring polarity.**

2. **Output Signal Too Low or Too High**
 - Transducer model improperly sized for application. **Determine the normal operating voltage of your monitored circuit and ensure transducer selected is equal to or slightly higher than the normal operating voltage.**

3. **Sensor is always at 4mA (or zero voltage)**
 - Primary circuit is not DC or is not on. **Check that the monitored load is DC and that it is actually on.**

4. **Sensor is always at 20mA (or 5/10VDC)**
 - Voltage is higher than transducer range. **Select a higher range product.**

Transducer Output vs. Input Voltage
![Graph: Transducer Output vs. Input Voltage]

Note: Voltage output will be linear in the same manner, with zero at zero primary voltage and 5 or 10 VDC at the full range measured voltage.