INSTRUCTIONS

1. Route wire to be monitored through aperture. Ensure current flow matches any arrow on sensor.
2. Mount the sensor to a surface if needed.
3. Connect output wiring. Caution: Do not connect grounded AC supply to output negative terminal. This may damage sensor output circuitry.
 A. Use up to 14 AWG copper wires. Tighten terminals to 4 inch-pounds torque.
 B. For mA output models, make sure output load is no more than 800 Ω.
 C. For VDC output models, make sure output load is at least 10KΩ.
4. Connect Power
 A. Connect the appropriate power supply.
5. Select Range
 A. Chose correct range by positioning the Range Jumper.

NK Technologies
3511 Charter Park Drive, San Jose, CA 95136
800-959-4014 or +1-408-871-7510 Phone
+1-408-871-7515 FAX
sales@nktechnologies.com, www.nktechnologies.com

Quick “How To” Guide

Other NK Technologies Products Include:
DC Current Switches, Ground Fault Sensors
AC & DC Current Switches
Power Transducers
Current & Potential Transformers (CTs&PTs)
Description

DT Series transducers combine a Hall Effect sensor and a signal conditioner into a single package. This provides higher accuracy, lower wiring costs, easier installation and saves valuable panel space. DT Series are available in split core with 0-20mA, 4-20mA, 0-5VDC or 0-10 VDC outputs.

Installation

For All Versions

Run wire to be monitored through opening in the sensor. Be sure the monitored current flows in the same direction as indicated by arrow on sensor. The arrow is just above the hinge, with the “+” symbol on the left, the “−” symbol on the right on the unipolar designs; bipolar models accept current flow in both directions.

DT Series transducers work in the same environment as motors, contactors, heaters, pull-boxes, and other electrical enclosures. They can be mounted in any position or hung directly on wires with a wire tie. Just leave at least one inch distance between sensor and other magnetic devices.

Split-Core

Press the tab in the direction as shown to open the sensor. After placing the wire in the opening, press the hinged portion firmly downward until a definite click is heard and the tab pops out fully.

Trouble Shooting - 0-20 & 4-20mA Models

1. **Output Signal Too Low**
 A. The jumper may be set in a range that is too high for current being monitored. Move jumper to the correct range.
 B. Power supply is inadequate. Check power supply. Make sure it is of sufficient voltage with all loads at maximum. DT Series draw 2.0 VA.
 C. Output load too high. Check output load, be sure it is no more than 650 Ω for current output models.

2. **Output Signal is always at maximum**
 A. The jumper may be set in a range that is too low for current being monitored. Move jumper to the correct range.

3. **Sensor has no output**
 A. Polarity is not properly matched. Check and correct wiring polarity
 B. Monitored load is not DC or is not on. Check that the monitored load is DC and that it is actually on.
 C. Split Core models: The core contact area may be dirty. Open the sensor and clean the contact area.

Trouble Shooting - 0-5VDC & 0-10 VDC Models

1. **Output Signal Too Low**
 A. The jumper may be set in a range that is too high for current being monitored. Move jumper to the correct range.
 B. Power supply is inadequate. Check power supply. Make sure it is of sufficient voltage with all loads at maximum. DT Series draw 2.0 VA.
 C. Output load too high. Check output load, be sure it is no more than 650 Ω for current output models.

2. **Output Signal is always at maximum**
 A. The jumper may be set in a range that is too low for current being monitored. Move jumper to the correct range.

3. **Sensor has no output**
 A. Polarity is not properly matched. Check and correct wiring polarity
 B. Monitored load is not DC or is not on. Check that the monitored load is DC and that it is actually on.
 C. Split Core models: The core contact area may be dirty. Open the sensor and clean the contact area.